Java知识分享网 - 轻松学习从此开始!    

Java知识分享网

Java1234官方群25:java1234官方群17
Java1234官方群25:838462530
        
SpringBoot+SpringSecurity+Vue+ElementPlus权限系统实战课程 震撼发布        

最新Java全栈就业实战课程(免费)

springcloud分布式电商秒杀实战课程

IDEA永久激活

66套java实战课程无套路领取

锋哥开始收Java学员啦!

Python学习路线图

锋哥开始收Java学员啦!
当前位置: 主页 > Java文档 > 人工智能AI >

卷积神经网络面试题 DOC 下载


分享到:
时间:2025-05-26 09:55来源:http://www.java1234.com 作者:转载  侵权举报
卷积神经网络面试题
失效链接处理
卷积神经网络面试题 DOC 下载

 
 
相关截图:
 


主要内容:
 

1.2为什么ReLU常用于神经网络的激活函数?

1.前向传播反向传播过程中,ReLU相比于Sigmoid等激活函数计算量小

2.避免梯度消失问题。对于深层网络,Sigmoid函数反向传播时,很容易就会出现梯度消失问题(在Sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的训练。

 

3.可以缓解过拟合问题的发生。Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

4.相比Sigmoid型函数,ReLU函数有助于随机梯度下降方法收敛

为什么需要激活功能?

激活函数是用来加入非线性因素的,因为线性模型的表达能力不够。

 

1.3 梯度消失和梯度爆炸的解决方案?梯度爆炸引发的问题?

梯度消失:靠近输出层的hidden layer 梯度大,参数更新快,所以很快就会收敛;

而靠近输入层的hidden layer 梯度小,参数更新慢,几乎就和初始状态一样,随机分布。 

另一种解释:当反向传播进行很多层的时候,由于每一层都对前一层梯度乘以了一个小数,因此越往前传递,梯度就会越小,训练越慢。

梯度爆炸:前面layer的梯度通过训练变大,而后面layer的梯度指数级增大

深度多层感知机(MLP)网络中,梯度爆炸会引起网络不稳定,最好的结果是无法从训练数据中学习,而最坏的结果是出现无法再更新的 NaN 权重值。

RNN中,梯度爆炸会导致网络不稳定,无法利用训练数据学习,最好的结果是网络无法学习长的输入序列数据

 



 


------分隔线----------------------------

锋哥公众号


锋哥微信


关注公众号
【Java资料站】
回复 666
获取 
66套java
从菜鸡到大神
项目实战课程

锋哥推荐