Java知识分享网 - 轻松学习从此开始!    

Java知识分享网

Java1234官方群25:java1234官方群25
Java1234官方群25:838462530
        

GIT视频教程(结合github,码云)免费领取

SpringBoot打造全栈在线教育平台实战课程

毕设代做论文包查重联系人QQ:1982956321毕设大神

SpringBoot打造企业级进销存

Java1234 VIP课程

领取微信扫码登录Java实现视频教程

Java1234至尊VIP(特价活动)
当前位置: 主页 > Java文档 > 大数据云计算 >

Kafka KSQL实战 PDF 下载


分享到:
时间:2020-08-22 10:07来源:http://www.java1234.com 作者:小锋  侵权举报
Kafka KSQL实战 PDF 下载
失效链接处理
Kafka KSQL实战  PDF 下载


本站整理下载:
 
相关截图:
 
主要内容:

1.背景
    kafka早期作为一个日志消息系统,很受运维欢迎的,配合ELK玩起来很happy,在kafka慢慢的转向流式平台的过程中,开发也慢慢介入了,一些业务系统也开始和kafka对接起来了,也还是很受大家欢迎的,由于业务需要,一部分小白也就免不了接触kafka了,这些小白总是会安奈不住好奇心,要精确的查看kafka中的某一条数据,作为服务提供方,我也很方啊,该怎么怼?业务方不敢得罪啊,只能写consumer去消费,然后人肉查询。
2.需求
    有什么方法能直接查询kafka中已有的数据呢?那时候presto就映入眼帘了,初步探索后发现presto确实强大,和我们在用的impala有的一拼,支持的数据源也更多,什么redis、mongo、kafka都可以用sql来查询,真是救星啊,这样那群小白就可以直接使用presto来查询里面的数据了。不过presto在不开发插件的情况下,对kafka的数据有格式要求,支持json、avro。关于presto的调研见presto实战。但是我只是想用sql查询kafka,而presto功能过于强大,必然整个框架就显得比较厚重了,功能多嘛。有什么轻量级的工具呢?
3.介绍
    某一天,kafka的亲儿子KSQL就诞生了,KSQL是一个用于Apache kafka的流式SQL引擎,KSQL降低了进入流处理的门槛,提供了一个简单的、完全交互式的SQL接口,用于处理Kafka的数据,可以让我们在流数据上持续执行 SQL 查询,KSQL支持广泛的强大的流处理操作,包括聚合、连接、窗口、会话等等。
    KSQL在内部使用Kafka的Streams API,并且它们共享与Kafka流处理相同的核心抽象,KSQL有两个核心抽象,它们对应于到Kafka Streams中的两个核心抽象,让你可以处理kafka的topic数据。关于这两个核心抽象下章节解读。
4.架构
4.1部署架构
 
        由一个KSQL服务器进程执行查询。一组KSQL进程可以作为集群运行。可以通过启动更多的KSQL实例来动态添加更多的处理能力。这些KSQL实例是容错的,如果一个实例失败了,其他的就会接管它的工作。查询是使用交互式的KSQL命令行客户端启动的,该客户端通过REST API向集群发送命令。命令行允许检查可用的stream和table,发出新的查询,检查状态并终止正在运行的查询。KSQL内部是使用Kafka的stream API构建的,它继承了它的弹性可伸缩性、先进的状态管理和容错功能,并支持Kafka最近引入的一次性处理语义。KSQL服务器将此嵌入到一个分布式SQL引擎中(包括一些用于查询性能的自动字节代码生成)和一个用于查询和控制的REST API。
4.2处理架构
 
5.抽象概念
    KSQL简化了流应用程序,它集成了stream和table的概念,允许使用表示现在发生的事件的stream来连接表示当前状态的table。 Apache Kafka中的一个topic可以表示为KSQL中的STREAM或TABLE,具体取决于topic处理的预期语义。下面看看两个核心的解读。
        stream:流是无限制的结构化数据序列,stream中的fact是不可变的,这意味着可以将新fact插入到stream中,但是现有fact永远不会被更新或删除。 stream可以从Kafka topic创建,或者从现有的stream和table中派生。
        table:一个table是一个stream或另一个table的视图,它代表了一个不断变化的fact的集合,它相当于传统的数据库表,但通过流化等流语义来丰富。表中的事实是可变的,这意味着可以将新的事实插入到表中,现有的事实可以被更新或删除。可以从Kafka主题中创建表,也可以从现有的流和表中派生表。
6.部署
    ksql支持kafka0.11之后的版本,在confluent的V3和V4版本中默认并没有加入ksql server程序,当然V3和V4是支持ksql的,在V5版本中已经默认加入ksql了,为了方便演示,我们使用confluent kafka V5版本演示,zk和kafka也是单实例启动。
6.1下载
wget https://packages.confluent.io/archive/5.0/confluent-oss-5.0.0-2.11.tar.gz
tar zxvf confluent-oss-5.0.0-2.11.tar.gz -C /opt/programs/confluent_5.0.0
6.2启动zk
cd /opt/programs/confluent_5.0.0
bin/zookeeper-server-start -daemon etc/kafka/zookeeper.properties
6.3启动kafka
cd /opt/programs/confluent_5.0.0
bin/kafka-server-start -daemon etc/kafka/server.properties
6.4创建topic和data
        confluent自带了一个ksql-datagen工具,可以创建和产生相关的topic和数据,ksql-datagen可以指定的参数如下:
[bootstrap-server=<kafka bootstrap server(s)> (defaults to localhost:9092)] 
[quickstart=<quickstart preset> (case-insensitive; one of 'orders', 'users', or 'pageviews')] 
schema=<avro schema file> 
[schemaRegistryUrl=<url for Confluent Schema Registry> (defaults to http://localhost:8081)] 
format=<message format> (case-insensitive; one of 'avro', 'json', or 'delimited') 
topic=<kafka topic name> 
key=<name of key column> 
[iterations=<number of rows> (defaults to 1,000,000)] 
[maxInterval=<Max time in ms between rows> (defaults to 500)] 
[propertiesFile=<file specifying Kafka client properties>]
        创建pageviews,数据格式为delimited
cd /opt/programs/confluent_5.0.0/bin
./ksql-datagen quickstart=pageviews format=delimited topic=pageviews maxInterval=500
            ps:以上命令会源源不断在stdin上输出数据,就是工具自己产生的数据,如下样例
8001 --> ([ 1539063767860 | 'User_6' | 'Page_77' ]) ts:1539063767860
8011 --> ([ 1539063767981 | 'User_9' | 'Page_75' ]) ts:1539063767981
8021 --> ([ 1539063768086 | 'User_5' | 'Page_16' ]) ts:1539063768086
            不过使用consumer消费出来的数据是如下样式
1539066430530,User_5,Page_29
1539066430915,User_6,Page_74
1539066431192,User_4,Page_28
1539066431621,User_6,Page_38
1539066431772,User_7,Page_29
1539066432122,User_8,Page_34
        创建users,数据格式为json
cd /opt/programs/confluent_5.0.0/bin
./ksql-datagen quickstart=users format=json topic=users maxInterval=100
        ps:以上命令会源源不断在stdin上输出数据,就是工具自己产生的数据,如下样例
User_5 --> ([ 1517896551436 | 'User_5' | 'Region_5' | 'MALE' ]) ts:1539063787413
User_7 --> ([ 1513998830510 | 'User_7' | 'Region_4' | 'MALE' ]) ts:1539063787430
User_6 --> ([ 1514865642822 | 'User_6' | 'Region_2' | 'MALE' ]) ts:1539063787481
        不过使用consumer消费出来的数据是如下样式
{"registertime":1507118206666,"userid":"User_6","regionid":"Region_7","gender":"OTHER"}
{"registertime":1506192314325,"userid":"User_1","regionid":"Region_1","gender":"MALE"}
{"registertime":1489277749526,"userid":"User_6","regionid":"Region_4","gender":"FEMALE"}
{"registertime":1497188917765,"userid":"User_9","regionid":"Region_3","gender":"OTHER"}
{"registertime":1493121964253,"userid":"User_4","regionid":"Region_3","gender":"MALE"}
{"registertime":1515609444511,"userid":"User_5","regionid":"Region_9","gender":"FEMALE"}


 

------分隔线----------------------------
锋哥公众号


锋哥微信


关注公众号
【Java资料站】
回复 666
获取 
66套java
从菜鸡到大神
项目实战课程