Java知识分享网 - 轻松学习从此开始!    

Java知识分享网

Java1234官方群25:java1234官方群17
Java1234官方群25:838462530
        
SpringBoot+SpringSecurity+Vue+ElementPlus权限系统实战课程 震撼发布        

最新Java全栈就业实战课程(免费)

springcloud分布式电商秒杀实战课程

IDEA永久激活

66套java实战课程无套路领取

锋哥开始收Java学员啦!

Python学习路线图

锋哥开始收Java学员啦!
当前位置: 主页 > Java文档 > Java基础相关 >

PaddlePaddle与深度学习应用实战 PDF 下载


分享到:
时间:2021-05-27 09:39来源:http://www.java1234.com 作者:转载  侵权举报
PaddlePaddle与深度学习应用实战 PDF 下载
失效链接处理
PaddlePaddle与深度学习应用实战 PDF 下载


本站整理下载:
版权归出版社和原作者所有,链接已删除,请购买正版
 
 
用户下载说明:
电子版仅供预览,下载后24小时内务必删除,支持正版,喜欢的请购买正版书籍:
http://product.dangdang.com/25291219.html
  
相关截图:



资料简介:
深度学习是目前人工智能研究中前沿、有效的一项技术,主要通过构建深度神经网络解决视觉、自然语言处理、语音识别等诸多领域的问题。百度在2016年发布了国内首个开源深度学习框架PaddlePaddle,简化了深度学习算法的实现步骤,提供了灵活、易用的接口,同时支持分布式训练。 本书由简单的例子引入深度学习和PaddlePaddle框架,介绍了PaddlePaddle的安装、测试与基本使用,并结合PaddlePaddle接口介绍深度学习的基础知识,包括常用的神经网络和算法。*后,通过一系列深度学习项目实例介绍PaddlePaddle在各种场景和问题中的应用,让读者由浅至深地理解并运用深度学习解决实际问题

资料目录:
第1 章 深度学习简介 .............................................................................................................. 1
1.1 初见 ....................................................................................................................................... 1
1.2 机器学习 ............................................................................................................................... 1
1.3 神经网络 ............................................................................................................................... 3
1.4 深度学习介绍 ....................................................................................................................... 7
1.5 深度学习应用 ....................................................................................................................... 8
1.6 深度学习框架 ..................................................................................................................... 12
1.7 深度学习的未来 ................................................................................................................. 15

第2 章 PaddlePaddle 简介 ................................................................................................... 16
2.1 安装PaddlePaddle ............................................................................................................... 16
2.2 测试PaddlePaddle ............................................................................................................... 29

第3 章 初探手写数字识别 .................................................................................................... 31

第4 章 PaddlePaddle 基本用法 ........................................................................................... 44
4.1 数据准备 ............................................................................................................................. 44
4.2 原始数据读取及预处理 ..................................................................................................... 44
4.3 PaddlePaddle 训练数据 ....................................................................................................... 46
4.4 模型配置 ............................................................................................................................. 52
4.5 激活函数 ............................................................................................................................. 58
4.6 优化方法 ............................................................................................................................. 64
4.7 损失函数 ............................................................................................................................. 72
4.8 均方损失函数 ..................................................................................................................... 73
4.9 交叉熵损失函数 ................................................................................................................. 73
4.10 Huber 损失函数 ................................................................................................................ 74
4.11 CRF 损失函数 ................................................................................................................... 74
4.12 CTC 损失函数 ................................................................................................................... 75
4.13 反向传播算法 ................................................................................................................... 75

第5 章 卷积神经网络 ............................................................................................................ 78
5.1 卷积神经网络 ..................................................................................................................... 78
5.2 实例学习 ............................................................................................................................. 87
5.3 拓展 ................................................................................................................................... 112

第6 章 循环神经网络 .......................................................................................................... 118
6.1 RNN 简介 .......................................................................................................................... 118
6.2 双向循环神经网络 ........................................................................................................... 121
6.3 循环神经网络使用场景 ................................................................................................... 127
6.4 预测sin 函数序列 ............................................................................................................. 129
6.5 拓展 ................................................................................................................................... 134

第7 章 PaddlePaddle 实战 ................................................................................................. 136
7.1 自编码器 ........................................................................................................................... 136
7.2 PaddlePaddle 实现自编码器 ............................................................................................. 137
7.3 实战OCR 识别(一) ..................................................................................................... 140
7.4 实战OCR 识别(二) ..................................................................................................... 150
7.5 情感分析 ........................................................................................................................... 164
7.6 Seq2Seq 及其应用 ............................................................................................................ 172
7.7 实现 ................................................................................................................................... 178
7.8 Image Caption .................................................................................................................... 194

第8 章 深度学习新星:生成对抗网络GAN ....................................................................... 208
8.1 生成对抗网络(GAN) ................................................................................................... 208
8.2 GAN 的其他应用 .............................................................................................................. 213
第9 章 强化学习与AlphaGo .............................................................................................. 216

 
------分隔线----------------------------

锋哥公众号


锋哥微信


关注公众号
【Java资料站】
回复 666
获取 
66套java
从菜鸡到大神
项目实战课程

锋哥推荐